Intermediates in serine recombinase-mediated site-specific recombination.
نویسندگان
چکیده
Site-specific recombinases are enzymes that promote precise rearrangements of DNA sequences. They do this by cutting and rejoining the DNA strands at specific positions within a pair of target sites recognized and bound by the recombinase. One group of these enzymes, the serine recombinases, initiates strand exchange by making double-strand breaks in the DNA of the two sites, in an intermediate built around a catalytic tetramer of recombinase subunits. However, these catalytic steps are only the culmination of a complex pathway that begins when recombinase subunits recognize and bind to their target sites as dimers. To form the tetramer-containing reaction intermediate, two dimer-bound sites are brought together by protein dimer-dimer interactions. During or after this initial synapsis step, the recombinase subunit and tetramer conformations change dramatically by repositioning of component subdomains, bringing about a transformation of the enzyme from an inactive to an active configuration. In natural serine recombinase systems, these steps are subject to elaborate regulatory mechanisms in order to ensure that cleavage and rejoining of DNA strands only happen when and where they should, but we and others have identified recombinase mutants that have lost dependence on this regulation, thus facilitating the study of the basic steps leading to catalysis. We describe how our studies on activated mutants of two serine recombinases, Tn3 resolvase and Sin, are providing us with insights into the structural changes that occur before catalysis of strand exchange, and how these steps in the reaction pathway are regulated.
منابع مشابه
Catalysis of site-specific recombination by Tn3 resolvase.
The active-site interactions involved in the catalysis of DNA site-specific recombination by the serine recombinases are still incompletely understood. Recent crystal structures of synaptic gammadelta resolvase-DNA intermediates and biochemical analysis of Tn3 resolvase mutants have provided new insights into the structure of the resolvase active site, and how interactions of the catalytic resi...
متن کاملSynapsis and DNA cleavage in fC31 integrase- mediated site-speci®c recombination
The Streptomyces phage fC31 encodes an integrase belonging to the serine recombinase family of sitespeci®c recombinases. The well studied serine recombinases, the resolvase/invertases, bring two recombination sites together in a synapse, and then catalyse a concerted four-strand staggered break in the DNA substrates whilst forming transient covalent attachments with the recessed 5¢ ends. Rotati...
متن کاملThe Bxb1 recombination system demonstrates heritable transmission of site-specific excision in Arabidopsis
BACKGROUND The mycobacteriophage large serine recombinase Bxb1 catalyzes site-specific recombination between its corresponding attP and attB recognition sites. Previously, we and others have shown that Bxb1 has catalytic activity in various eukaryotic species including Nicotiana tabacum, Schizosaccharomyces pombe, insects and mammalian cells. RESULTS In this work, the Bxb1 recombinase gene wa...
متن کاملSite-specific recombination systems for the genetic manipulation of eukaryotic genomes.
Site-specific recombination systems, such as the bacteriophage Cre-lox and yeast FLP-FRT systems, have become valuable tools for the rearrangement of DNA in higher eukaryotes. As a first step to expanding the repertoire of recombination tools, we screened recombination systems derived from the resolvase/invertase family for site-specific recombinase activity in the fission yeast Schizosaccharom...
متن کاملReal-time single-molecule tethered particle motion experiments reveal the kinetics and mechanisms of Cre-mediated site-specific recombination
Tyrosine family recombinases (YRs) are widely utilized in genome engineering systems because they can easily direct DNA rearrangement. Cre recombinases, one of the most commonly used types of YRs, catalyze site-specific recombination between two loxP sites without the need for high-energy cofactors, other accessory proteins or a specific DNA target sequence between the loxP sites. Previous stru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemical Society transactions
دوره 39 2 شماره
صفحات -
تاریخ انتشار 2011